
Parallel Algorithms for
PDE-Constrained
Optimization

Volkan Akçelik
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1 Introduction
PDE-constrained optimization refers to the optimization of systems governed by partial
differential equations (PDEs). The simulation problem is to solve the PDEs for the state
variables (e.g. displacement, velocity, temperature, electric field, magnetic field, species
concentration), given appropriate data (e.g. geometry, coefficients, boundary conditions,
initial conditions, source functions). The optimization problem seeks to determine some
of these data—the decision variables—given performance goals in the form of an objec-
tive function and possibly inequality or equality constraints on the behavior of the system.
Since the behavior of the system is modeled by the PDEs, they appear as (usually equality)
constraints in the optimization problem. We will refer to these PDE constraints as the state
equations.

Let � represent the state variables, � the decision variables, � the objective function,	 the residual of the state equations, and 
 the residual of the inequality constraints. We
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can then state the general form of a PDE-constrained optimization problem as:�������� � �
	 ��� ��
subject to 	 	 ��� ������ (1)


�	 ��� ������
The PDE-constrained optimization problem (1) can represent an optimal design, optimal
control, or inverse problem, depending on the nature of the objective function and decision
variables. The decision variables correspondingly represent design, control, or inversion
variables.

Many engineering and science problems—in such diverse areas as aerodynamics,
atmospheric sciences, chemical process industry, environment, geosciences, homeland se-
curity, infrastructure, manufacturing, medicine, and physics—can be expressed in the form
of a PDE-constrained optimization problem. The common difficulty is that PDE solution
is just a subproblem associated with optimization. Moreover, while the simulation prob-
lem (given � , find � from 	 	 ��� ������ ) is usually well-posed, the optimization problem
(1) can be ill-posed. Finally, when the state equations are evolutionary in nature, the opti-
mality conditions for (1) are a boundary value problem in space–time. For these reasons,
the optimization problem is often significantly more difficult to solve than the simulation
problem.

The size, complexity, and infinite-dimensional nature of PDE-constrained optimiza-
tion problems present significant challenges for general-purpose optimization algorithms.
These features often require regularization, iterative solvers, preconditioning, globaliza-
tion, inexactness, and parallel implementation that are tailored to the structure of the under-
lying operators. Continued advances in PDE solvers, and the rapid ascendance of parallel
computing, have in recent years motivated the development of special-purpose optimiza-
tion algorithms that exploit the structure of the PDE constraints and scale to large numbers
of processors. These algorithms are the focus of this chapter.

To illustrate the main issues, let us consider a distributed optimal flow control prob-
lem for the steady-state Burgers equation:�������� � ��	����! "$#&%('� )* +-,/. �10 . �2 436587* +�,  90& : "3

subject to ;=<�>?�@5A	 . ��B�C�D in E (2)�1��F on G�E
Here, �IHB3�J is the velocity field,  �HB3�J is a domain source, F�H!KLJ is a boundary source, < is
the viscosity, E represents the domain and G�E its boundary, and 7 is a parameter reflecting
the cost of the controls. In the simulation problem we are given the data <-�M N�MEO�BF and we
seek the state � . In the optimization problem the situation is reversed: we wish to determine
a portion of the data, for example F (boundary control),  (distributed control), P (shape
or topology optimization), or < (parameter estimation), so that the decision variable and
resulting state � minimize some functional of these variables. In the particular example
(2), the decision variable is just the distributed source  , and < , E , F are taken as knowns.
The objective � represents a balance between the rate of energy dissipation and the QSR cost
of the controls.



A classical way to approach this problem is to introduce a Lagrange multiplier field,� H 3�J , known as the adjoint state or costate variable, and form a Lagrangian functional �
that incorporates the PDE constraints via an “inner product” with

�
,

�O	 � � � �M 4$# %('� ��	 � �! ""5 + ,�� < . �20 . � 5 � 0 	 . ��B� ;= :0 ���  43 (3)

One then requires stationarity of � with respect to the state ( � ), decision (  ), and adjoint
(
�

) variables. Taking variations and invoking the appropriate Green identities, we arrive
at the following system of equations representing first-order necessary conditions for opti-
mality:

; <�>?�@5D	 . �  �C�A in E state equation (4)�C��F on G E; <�> � 5D	 . ���� � ; 	 . �  � ; � div �C��>�� in E adjoint equation (5)� ��� on G E
7  5 � ��� in E decision equation (6)

The state equation (4) is just the original Burgers boundary value problem that appears as
a constraint in the optimization problem (2). The adjoint equation (5), which results from
stationarity with respect to the state, is a boundary value problem that is linear in the ad-
joint variable

�
, and involves the adjoint of the linearized state operator. With appropriate

discretization, this adjoint operator is just the transpose of the Jacobian of the discretized
state equation. Finally the decision equation (6) is in this case algebraic (it would have
been differential had the cost of the controls been �
	 instead of Q�R ). The first-order opti-
mality conditions (4)–(6) are a system of coupled, nonlinear PDEs, and are often known as
the Karush-Kuhn-Tucker (KKT) conditions. For theory and analysis of PDE-constrained
optimization problems such as (2), see for example [12], [32], [39], [66], [69]. For recent
algorithmic trends and large-scale applications, see [19].

In this chapter we review efficient parallel algorithms for solution of PDE optimal-
ity systems such (4)–(6). Since the coupled optimality system can be formidable to solve
simultaneously, a popular alternative is to eliminate state and adjoint variables, and, corre-
spondingly, state and adjoint equations, thereby reducing the system to a manageable one
in just the decision variable. Methods of this type are known as reduced space methods.
For example, a nonlinear elimination variant of a reduced space method would proceed as
follows for the KKT system (4)–(6). Given  at some iteration, solve the state equation
(4) for the state variable � . Knowing the state then permits solution of the adjoint equa-
tion (5) for the adjoint variable

�
. Finally, with the state and adjoint known, the decision

variable  is updated via an appropriate linearization of the decision equation. This loop
is then repeated until convergence. As an alternative to such nonlinear elimination, one
often prefers to follow the Newton strategy of first linearizing the optimality system, and
then eliminating the state and adjoint updates via block elimination on the linearized state
and adjoint equations. The resulting Schur complement operator is known as the reduced
Hessian, and the equation to which it corresponds can be solved to yield the decision vari-
able update. Since the main components of reduced space method are (linearized) state
and adjoint PDE solves, as well as dense decision space solves, parallelism for this reduced



Newton solution of the optimization problem is typically as straightforward to achieve as
it is for the simulation problem. Algorithms of this class will be reviewed in Section 2.1.

Reduced space methods are attractive for several reasons. Solving the subsets of
equations in sequence exploits the state/adjoint/decision structure of the optimality sys-
tem, capitalizing on well-established methods and software for solving the state equation.
Adjoint PDE solvers are becoming more popular, due to their role in goal-oriented error
estimation and efficient sensitivity computation, so they can be exploited as well. Even in
their absence, the strong similarities between the state and adjoint operators suggest that an
existing PDE solver for the state equation can be modified with reasonable effort to handle
the adjoint equation. Finally, exploiting the structure of the reduced Hessian is straight-
forward (at least for problems of moderate size), since it is a Schur complement of the
linearized KKT conditions with respect to the decision variables and is therefore dense.

Another advantage of reduction is that the linearized KKT system is often very ill-
conditioned (beyond, say, the usual ��� R ill-conditioning of second-order differential oper-
ators); the state and adjoint blocks on the other hand inherit the conditioning properties of
the simulation problem. Moreover, the reduced Hessian often has favorable spectral struc-
ture (e.g. for many inverse problems its spectrum is similar to that of second kind integral
operators) and Krylov solvers can converge in a mesh-independent number of iterations.
However, as is the case for most exact Schur-type approaches, the major disadvantage of
reduced methods is the need to solve the (linearized) state and adjoint equations exactly
at each reduced space iteration, which is a direct consequence of the reduction onto the
decision variable space.

In contrast to reduced space methods, full space methods solve for the state, decision,
and adjoint variables simultaneously. For large-scale problems, this is typically effected via
Newton-Krylov iteration. That is, the linear system arising from the KKT systems at each
Newton iteration is solved using a Krylov iterative method. The difficulty of this approach
is the complex structure, indefiniteness, and ill-conditioning of the KKT system, which in
turn requires effective preconditioning. Since the KKT optimality conditions are usually
PDEs, it is natural to seek domain decomposition or multigrid preconditioners for this task.
However, stationarity of the Lagrangian is a saddle-point problem, and existing domain
decomposition and multilevel preconditioners for the resulting indefinite systems are not
as robust as those for definite systems. Furthermore, constructing the correct smoothing,
prolongation, restriction, and interface operators can be quite challenging. Despite these
difficulties, there have been several successful algorithms based on overlapping and non-
overlapping domain decomposition and multigrid preconditioners; these are reviewed in
Section 2.3. Since these methods regard the entire optimality system as a system of coupled
PDEs, parallelism follows naturally, as it does for PDE problems, i.e. in a domain-based
way.

An alternative full-space approach to domain decomposition or multigrid is to retain
the structure-exploiting, condition-improving advantages of a reduced space method, but
use it as a preconditioner rather than a solver. That is, we solve in the full space using a
Newton-Krylov method, but precondition with a reduced space method. Since the reduced
space method is just a preconditioner, it can be applied approximately, requiring just inexact
state and adjoint solves at each iteration. These inexact solves can simply be applications
of appropriate domain decomposition or multigrid preconditioners for the state and adjoint
operators. Depending on its spectral structure, one may also require preconditioners for



the reduced Hessian operator. Substantial speedups can be achieved over reduced space
methods due to the avoidance of exact solution of the state and adjoint equations at each
decision iteration, as the three sets of variables are simultaneously converged. Since the
main work per iteration is in the application of preconditioners for the state, adjoint, and
decision equations, as well as carrying out PDE-like full space matrix-vector products,
these reduced-space-preconditioned full-space methods can be made to parallelize as well
as reduced space methods, i.e. as well as the simulation problem. Such methods will be
discussed in Section 2.2.

Numerical evidence suggests that for steady-state PDE-constrained optimization prob-
lems, full-space methods can outperform reduced space methods by a wide margin. Typical
multigrid efficiency has been obtained for some classes of problems. For optimization of
systems governed by time-dependent PDEs, the answer is not as clear. The nonlinearities
within each time step of a time-dependent PDE solve are usually much milder than for
the corresponding stationary PDEs, so amortizing the nonlinear PDE solve over the opti-
mization iterations is less advantageous. Moreover, time dependence results in large stor-
age requirements for full-space methods, since the full space optimality system becomes
a boundary value problem in the space–time cylinder. For such problems, reduced space
methods are often preferable. Section 3 provides illustrative examples of optimization
problems governed by both steady-state and time-dependent PDEs. The governing equa-
tions include convective-diffusive transport, Navier-Stokes flow, and acoustic wave propa-
gation; the decision variables include those for control (for boundary sources), design-like
(for PDE coefficients), and inversion (for initial conditions). Both reduced space and full
space parallel KKT solvers are demonstrated and compared. Parallel implementation issues
are discussed in the context of the acoustic inversion problem.

Notation in this chapter respects the following conventions. Scalars are in lowercase
italics type, vectors are in lowercase boldface Roman type, and matrices and tensors are in
uppercase boldface Roman type. Infinite dimensional quantities are in italics type, whereas
finite dimensional quantities (usually discretizations) are upright. We will use � or  or �
for decision variables, � or � or � for the states, and � or

�
for adjoint variables.

2 Algorithms
In this section we discuss algorithmic issues related to efficient parallel solution of first
order optimality systems by Newton-like methods. Due to space limitations, we omit dis-
cussion of adaptivity and error estimation, regularization of ill-posed problems, inequality
constraints on state and decision variables, globalization methods to ensure convergence
from distant iterates, and checkpointing strategies for balancing work and memory in time-
dependent adjoint computations. These issues must be carefully considered in order to
obtain optimally scalable algorithms. The following are some representative references in
the infinite-dimensional setting; no attempt is made to be comprehensive. Globalization
in the context of PDE solvers is discussed in [63] and in the context of PDE optimization
in [51], [77]. For a discussion of active set and interior point methods for inequality con-
straints in an optimal control setting, see [18], [76] and for primal-dual active set methods
see [52]. For adaptive methods and error estimation in inverse problems see [11], [16],
[17], [73]; for details on regularization see [36], [45], [79]. See [37], [54] for discussions



of checkpointing strategies.
Our discussion of parallel algorithms in this section will be in the context of the dis-

crete form of a typical PDE-constrained optimization problem; that is, we first discretize
the objective and constraints, and then form the Lagrangian function and derive optimal-
ity conditions. Note that this is the reverse of the procedure that was employed in the
optimal flow control example in the previous section, in which the infinite-dimensional La-
grangian functional was first formed and then infinite-dimensional optimality conditions
were written. When these infinite-dimensional conditions are discretized, they may result
in different discrete optimality conditions than those obtained by first discretizing and then
differentiating to form optimality conditions. That is, differentiation and discretization do
not necessarily commute. We refer the reader to [1], [31], [39], [53], [70] for details.

Let us represent the discretized PDE-constrained optimization problem by�������� � �
	 ��� ��
subject to 	 	 ��� ������ (7)

where �������N� ������� are the state and decision variables, ����� is the objective
function, and 	 �	��� are the discretized state equations. Using adjoint variables

� �
��� ,

we can define the Lagrangian function by �O	 ��� ��� �  #&%('� �
	 ��� ��$5 � � 	 	 ��� ��� The first
order optimality conditions require that the gradient of the Lagrangian vanish:�� � G�� �G�� �G�� �

� �
� �

�� ��� �I5�� �� �� ��5�� � � �	

� �
� �A� (8)

Here, � � ����� and � � ����� are the gradients of � with respect to the states and decision
variables respectively; � �!�����#"$� is the Jacobian of the state equations with respect to the
state variables; and �%�&�'�(�)"�� is the Jacobian of the state equations with respect to the
decision variables. A Newton step on the optimality conditions gives the linear system*+-, �.� , �/�0� ��, �1� , ��2� � ��3� � � �

45 �� ��6 �6 ���7
� �
� �8;

�� � � �� �	

� �
� (9)

Here,
, �8�:9 � 7 �<;=" 9 � 7 �<; is the Hessian matrix of the Lagrangian (it involves second

derivatives of both � and 	 ), and is block-partitioned according to state and decision vari-
ables; 6 � �>��� is the search direction in the � variables; 6 � �?��� is the search direction
in the � variables; and

� 7 �@��� is the updated adjoint variable. This linear system is
known as the Karush-Kuhn-Tucker (KKT) system, and its coefficient matrix as the KKT
matrix. The KKT matrix is of dimension 	 */A 5�B DCC	 *EA 5�B  . For realistic 3D PDE
problems,

A
and possibly B are very large, so LU factorization of the KKT matrix is not an

option. Iterative methods applied to the full KKT system suffer from ill-conditioning and
non-positive-definiteness of the KKT matrix. On the other hand, it is desirable to capitalize
on existing parallel algorithms (and perhaps software) for “inverting” the state Jacobian ���
(and its transpose). Since this is the kernel step in a Newton-based PDE solver, there is
a large body of work to build on. For example, for elliptic or parabolic PDEs, optimal or



nearly-optimal parallel algorithms are available that require algorithmic work that is linear
or weakly superlinear in

A
, and scale to thousands of processors and billions of variables.

The ill-conditioning and complex structure of the KKT matrix, and the desire to exploit
(parallel) PDE solvers for the state equations, motivate the use of reduced space methods,
as discussed below.

2.1 Reduced space methods

As mentioned in the introduction, one way to exploit existing PDE-solvers is to eliminate
the state and adjoint equations and variables, and then solve the reduced Hessian system
in the remaining decision space. We refer to this as a reduced Newton (RN) method. It
can be derived by block elimination on the KKT system (9): eliminate 6 � from the last
block of equations (the state equations); then eliminate

� 7
from the first block (the adjoint

equations); and finally solve the middle block (the decision equations) for 6 � . This block
elimination on (9) amounts to solving the following equations at each Newton step.
Reduced Newton (RN):,�� 6 � �8; � � ;>� � � � � �� � � 5 , �� � � � 	� 	 decision step� � 6 � �8;<� � 6 � ; 	 state step (10)� �� � 7 �8; 	 � �O5 , �.� 6 � 5 , �/� 6 �  adjoint step

The right-hand side of the decision equation involves the cross-Hessian
,
�
�
, given by,

�
� # %('� , �/� ; , �.� � � 	� � �

The coefficient matrix of the decision step, which is the Schur complement of
, �� , is given

by , � # %('� � � � � � �� , �.� � � 	� � � ;>� � � � � �� , �/� ; , �1�E� � 	� � ��5 , ��
and is known as the reduced Hessian matrix. Because it contains the inverses of the state
and adjoint operators, the reduced Hessian

, �
is a dense matrix. Thus, applying a dense

parallel factorization is straightforward. Moreover, since the reduced Hessian is of the
dimension of the decision space, B , the dense factorization can be carried out on a single
processor when the number of decision variables is substantially smaller than the number
of states (as is the case when the decision variables represent discrete parameters that are
independent of the mesh size). The remaining two linear systems that have to be solved at
each Newton iteration—the state and adjoint updates—have as coefficient matrix either the
state Jacobian � � or its transpose � �� . Since “inverting” the state Jacobian is at the heart
of a Newton solver for the state equations, the state and adjoint updates in (10) are able
to exploit available parallel algorithms and software for the simulation problem. It follows
that the RN method can be implemented with parallel efficiency comparable to that of the
simulation problem.

However, the difficulty with the RN method is the need for B solutions of the (lin-
earized) state equations to construct the � � 	� � � term within

, �
. This is particularly trou-

blesome for large-scale 3D problems, where (linearized) PDE systems are usually solved
iteratively, and solution costs cannot be amortized over multiple right hands as effectively



as with direct solvers. When B is moderate or large (as will be the case when the deci-
sion space is mesh-dependent), RN with exact formation of the reduced Hessian becomes
intractable. So while its parallel efficiency may be high, its algorithmic efficiency can be
poor.

An alternative to forming the reduced Hessian is to solve the decision step in (10)
by a Krylov method. Since the reduced Hessian is symmetric, and positive definite near a
minimum, the Krylov method of choice is conjugate gradients (CG). The required action
of the reduced Hessian

, �
on a decision-space vector within the CG iteration is formed

in a matrix-free manner. This can be achieved with the dominant cost of a single pair
of linearized PDE solves (one state and one adjoint). Moreover, the CG iteration can be
terminated early to prevent oversolving in early iterations and to maintain a direction of
descent [33]. Finally, in many cases the spectrum of the reduced Hessian is favorable for
CG and convergence can be obtained in a mesh-independent number of iterations. We
refer to this method as a reduced Newton-CG (RNCG) method, and demonstrate it for a
large-scale inverse wave propagation problem in Section 3.1.

While RNCG avoids explicit formation of the exact Hessian and the required B (lin-
earized) PDE solves, it does still require a pair of linearized PDE solves per CG iteration.
Moreover, the required second derivatives of the objective and state equations are often
difficult to compute (although this difficulty may be mitigated by continuing advances in
automatic differentiation tools [61]). A popular technique that addresses these two difficul-
ties is a reduced quasi-Newton (RQN) method that replaces the reduced Hessian

, �
with a

quasi-Newton (often BFGS) approximation
� �

, and discards all other Hessian terms [20].
Reduced Quasi-Newton (RQN):

� � 6 � �8; � �S;
� � � � � �� � � decision step�3� 6 �?�8;<� � 6 �S; 	 state step (11)� �� � 7 �8; � � adjoint step

We see that RQN requires just two (linearized) PDE solves per Newton iteration (one a
linearized state solve with � � and one an adjoint solve with � �� ), as opposed to the B
PDE solves required for RN (the adjoint step to compute the adjoint variable is superfluous
in this algorithm). And with Hessian terms either approximated or dropped, no second
derivatives are needed. When the number of decision variables B is small and the number
of states

A
is large, the BFGS update (which involves updates of the Cholesky factors of the

BFGS approximation) can be computed serially, and this can be done redundantly across
all processors [67]. For problems in which B is intermediate in size, the BFGS update
may become too expensive for a single processor, and updating the inverse of the dense
BFGS approximation can be done efficiently in parallel. Finally, for large B (such as in
distributed control or estimation of continuous fields), a limited-memory BFGS (in place of
a full) update [68] becomes necessary. When implemented as an update for the inverse of
the reduced Hessian, the required decision-space inner products and vector sums parallelize
very well, and good overall parallel efficiency results [21]. A measure of the success of
RQN is its application to numerous problems governed by PDEs from linear and nonlinear
elasticity, incompressible and compressible flow, heat conduction and convection, phase
changes, and flow through porous media. With RQN as described above, the asymptotic
convergence rate drops from the quadratic rate associated with RN to 2-step superlinear. In



addition, unlike the usual case for RN, the number of iterations taken by RQN will typically
increase as the decision space is enlarged (i.e. as the mesh is refined), although this also
depends on the spectrum of the reduced Hessian and on the difference between it and the
initial BFGS approximation. See for example [59] for discussion of quasi-Newton methods
for infinite-dimensional problems. Specialized quasi-Newton updates that take advantage
of the “compact + differential” structure of reduced Hessians for many inverse problems
have been developed [40].

As described in the Introduction, one final option for reduced space methods is a
nonlinear elimination variant, which we term nonlinear reduced Newton (NLRN). This is
similar to RN, except elimination is performed on the nonlinear optimality system (8). The
state equations and state variables are eliminated at each iteration by nonlinear solution of	 	 ��� �$��A� . Similarly, the adjoint equations and adjoint variables are eliminated at each
iteration by solution of the linear system � �� � � ; � � . This gives the following form at
each Newton step.
Nonlinear Reduced Newton (NLRN):, � 6 �O� ; � �S;
� � � � � �� � � decision step (12)

where 	 	 ��� ��?� � is implicit in (12) and the adjoint solve contributes to the right-hand
side. Alternatively, one may think of NLRN as solving the optimization problem (7) in the
space of just the decision variables, by eliminating the state variables and constraints, to
give the unconstrained optimization problem:������ � 	 ��	 �� � �$
Application of Newton’s method to solve this problem, in conjunction with the implicit
function theorem to generate the necessary derivatives, yields NLRN above [64]. NLRN
can also be implemented in quasi-Newton and Newton-CG settings. These methods are
particularly attractive for time-dependent PDE-constrained optimization problems, in par-
ticular those that require a large number of time steps or are time-integrated accurately
and/or explicitly. In this case the need to carry along and update the current state and
adjoint estimates (which are time-dependent) is onerous; on the other hand, there is little
advantage to simultaneous solution of the state equations and the optimization problem (in
the absence of inequality constraints on the states), if the state equations are weakly non-
linear (as they will be with accurate time-stepping) or explicitly-solved. NLRN permits
estimates of just the decision variables to be maintained at each optimization iteration.

As successful as the reduced space methods of this section are in combining fast
Newton-like convergence with a reduced number of PDE solves per iteration, they do still
(formally) require the exact solution of linearized state and adjoint PDE problems at each
iteration. In the next section, we see that a method can be constructed that avoids the exact
solves while retaining the structure-exploiting advantages of reduced methods.

2.2 LNKS: Krylov full-space solution with approximate
reduced space preconditioning

In this section we return to solution of the full-space Newton step (9). We consider use of
a Krylov method, in particular symmetric QMR, applied directly to this system. QMR is



attractive because it does not require a positive definite preconditioner. The indefiniteness
and potential ill-conditioning of the KKT matrix demand a good preconditioner. It should
be capable of exploiting the structure of the state constraints (specifically that good precon-
ditioners for � � are available), should be cheap to apply, should be effective in reducing
the number of Krylov iterations, and should parallelize readily. The reduced space methods
described in the previous section—in particular an approximate form of RQN—fulfill these
requirements.

We begin by noting that the block elimination of (10) is equivalent to the following
block factorization of the KKT matrix:*+&, �.�E� � 	� � �, �1� � � 	� � � � � � � ��

� � �
45 *+ �3� �3� �� , � �� ,

�
� � ��

45
(13)

Note that these factors can be permuted to block triangular form, so we can think of (13)
as a block LU factorization of the KKT matrix. To derive the preconditioner, we replace
the reduced Hessian

, �
in (13) by a (usually but not necessarily) limited memory BFGS

approximation
� �

(as in RQN), drop other second derivative terms (also as in RQN), and
replace the exact (linearized) state and adjoint operators �%� and � �� with approximations��3� and

�� �� . The resulting preconditioner then takes the form of the following approximate
block-factorization of the KKT matrix:*+ � � �� � � � � �� � ��

� � �
45�*+ ��3� �3� �� � � �� � �� ��

45
(14)

Applying the preconditioner by solving with the block factors (14) amounts to performing
the RQN step in (11), but with approximate state and adjoint solves. A good choice for�� � is one of the available parallel preconditioners for � � —for many PDE operators, there
exist near-spectrally-equivalent preconditioners that are both cheap to apply (their cost is
typically linear or weakly superlinear in problem size) and effective (resulting in iteration
counts that are independent of, or increase very slowly in, problem size). For examples
of state-of-the-art parallel PDE preconditioners, see [2] for multigrid and [6] for domain
decomposition.

With (14) used as a preconditioner, the preconditioned KKT matrix becomes:*+
� � � 	�� �- ��, �� � �� � 	� � 	�� � 45 ,�� � � 	� � 	�� � , � � �� � 	� �,

�
� � � 	� � �

45

where � � # %('� � � 	� ; �� � 	� , � � # %('� � � �� � 	� ,
�,
�
� # %('� , �/� ; , �.� �� � 	� � � . For exact state

equation solution, � � � � and � � ��� , and we see that the reduced space preconditioner
clusters the spectrum of the KKT matrix, with all eigenvalues either unit or belonging to, � � � 	� . Therefore, when

��3� is a good preconditioner for the state Jacobian, and when
� �

is a good approximation of the reduced Hessian, we can expect the preconditioner (14) to
be effective in reducing the number of Krylov iterations.

We refer to this method as Lagrange-Newton-Krylov-Schur(LNKS), since it amounts
to a Newton-Krylov method applied to the Lagrangian stationarity conditions, precondi-
tioned by a Schur complement (i.e. reduced Hessian) approximation. See [22], [23], [24],



[25] for further details, and [14], [15], [42], [43], [46], [61] for related methods that use
reduced space preconditioning ideas for full-space KKT systems.

Since LNKS applies an approximate version of a reduced space method as a precon-
ditioner (by replacing the PDE solve with a PDE preconditioner application), it inherits
the parallel efficiency of RQN in the preconditioning step. The other major cost is the
KKT matrix-vector product in the Krylov iteration. For many PDE-constrained optimiza-
tion problems, the Hessian of the Lagrangian and the Jacobian of the constraints are sparse
with structure dictated by the mesh (particularly when the decision variables are mesh-
related). Thus, formation of the matrix-vector product at each Krylov iteration is linear in
both state and decision variables, and it parallelizes well in the usual fine-grained, domain-
decomposed manner characteristic of PDE problems. To achieve overall scalability, we
require not just parallel efficiency of the components, but also algorithmic scalability in
the sense of mesh-independence (or near-independence) of both Newton and Krylov itera-
tions. Mesh-independence of Newton iterations is characteristic of a wide class of smooth
nonlinear operator problems, and we have observed it for a variety of PDE-constrained op-
timization problems (see also [81]). Mesh-independence of LNKS’s Krylov iterations de-
pends on the efficacy of the state and adjoint PDE preconditioners and the limited memory
BFGS (or other) approximation of the reduced Hessian. While the former are well-studied,
the performance of the latter depends on the nature of the governing PDEs as well as the
objective functional. In Section 3.2 we demonstrate parallel scalability and superiority of
LNKS over limited memory RQN for a large-scale optimal flow control problem.

2.3 Domain decomposition and multigrid methods

As an alternative to the Schur-based method described in Section 2.2 for solution of the
full-space Newton step (9), one may pursue domain decomposition or multigrid precondi-
tioners for the KKT matrix. These methods are more recent than those of Section 2.1 and
are undergoing rapid development. Here we give just a brief overview and cite relevant
references.

In [71] an overlapping Krylov-Schwarz domain decomposition method was used to
solve (9) related to the boundary control of an incompressible driven-cavity problem. This
approach resulted in excellent algorithmic and parallel scalability on up to 64 processors
for a velocity-vorticity formulation of the 2D steady-state Navier-Stokes equations. One
key insight of the method is that the necessary overlap for a control problem is larger than
that for the simulation problem. More recently a multi-level variant has been derived [72].

Domain-decomposition preconditioners for linear-quadratic elliptic optimal control
problems are presented in [49] for the overlapping case and [50] for the non-overlapping
case. Mesh-independent convergence for two-level variants is shown. These domain de-
composition methods have been extended to advection-diffusion [13] and time-dependent
parabolic [48] problems. Parallelism in the domain-decomposition methods described
above can be achieved for the optimization problem in the same manner as it is for the
simulation problem, i.e. based on spatial decomposition. Several new ideas in parallel time
domain decomposition have emerged recently [41], [47], [78] and have been applied in the
parabolic and electromagnetic settings. Although parallel efficiency is less than optimal,
parallel speedups are still observed over non-time-decomposed algorithms, which may be
crucial for real-time applications.



Multigrid methods are another class of preconditioners for the full-space Newton
system (9). An overview can be found in [35]. There are three basic approaches: multigrid
applied directly to the optimization problem; multigrid as a preconditioner for the reduced
Hessian

, �
in RNCG; and multigrid on the full space Newton system (9). In [65] multi-

grid is applied directly to the optimization problem to generate a sequence of optimization
subproblems with increasingly coarser grids. It is demonstrated that multigrid may acceler-
ate solution of the optimization problem even when it may not be an appropriate solver for
the PDE problem. Multigrid for the reduced system (in the context of shape optimization
of potential and steady-state incompressible Euler flows) has been studied in [7], [8] based
on an analysis of the symbol of the reduced Hessian. For a large class of problems, es-
pecially with the presence of a regularization term in the objective functional, the reduced
Hessian operator is spectrally equivalent to a second-kind Fredholm integral equation. Al-
though this operator has a favorable spectrum leading to mesh-independent convergence,
in practice preconditioning is still useful to reduce the number of iterations. It is essential
that the smoother be tailored to the “compact + identity” structure of such operators [44],
[57], [60], [62]. The use of appropriate smoothers of this type has resulted in successful
multigrid methods for inverse problems for elliptic and parabolic PDEs [4], [34], [58].

Multigrid methods have also been developed for application to the full KKT optimal-
ity system for nonlinear inverse electromagnetic problems [9] and for distributed control
of linear elliptic and parabolic problems [26], [27]. In such approaches, the state, adjoint,
and decision equations are typically relaxed together in pointwise manner (or in the case
of Q�R regularization, the decision variable can be eliminated and pointwise relaxation is
applied to the coupled state–adjoint system). These multigrid methods have been extended
to optimal control of nonlinear reaction-diffusion systems as well [28],[29]. Nonlinearities
are addressed through either Newton-multigrid or the full approximation scheme (FAS).
Just as with reduced space multigrid methods, careful design of the smoother is critical to
the success of full space multigrid.

3 Numerical examples
In this section we present numerical results for parallel solution of three large-scale 3D
PDE-constrained optimization problems. Section 3.1 presents an inverse acoustic scat-
tering problem that can be formulated as a PDE-constrained optimization problem with
hyperbolic constraints. The decision variables represent the PDE coefficient, in this case
the squared velocity of the medium (and thus the structure is similar to a design prob-
lem). Because of the large number of time steps and the linearity of the forward problem,
a full-space method is not warranted, and instead the reduced space methods of Section
2.1 are employed. In Section 3.2 we present an optimization problem for boundary control
of steady Navier-Stokes flows. This problem is an example of an optimization problem
constrained by a nonlinear PDE with a dominant elliptic term. The decision variables are
velocity sources on the boundary. The LNKS method of Section 2.2 delivers excellent per-
formance for this problem. Finally, Section 3.3 presents results from an inverse problem
with a parabolic PDE, the convection-diffusion equation. The problem is to estimate the
initial condition of an atmospheric contaminant from sparse measurements of its transport.
In these three examples, we encounter: elliptic, parabolic, and hyperbolic PDE constraints;



forward solvers that are explicit, linearly implicit, and nonlinearly implicit; optimization
problems that are linear, nonlinear in the state, and nonlinear in the decision variable; de-
cision variables that represent boundary condition, initial condition, and PDE coefficient
fields; inverse, control, and design-like problems; reduced space and full space solvers;
and domain decomposition and multigrid preconditioners. Thus, the examples provide a
glimpse into a wide spectrum of problems and methods of current interest.

All of the examples presented in this section have been implemented on top of the
parallel numerical PDE solver library PETSc [10]. The infinite-dimensional optimality
conditions presented in the following sections are discretized in space with finite elements
and (where applicable) in time with finite differences. For each example, we study the
algorithmic scalability of the parallel method, i.e. the growth in iterations as the problem
size and number of processors increase. In addition, for the acoustic scattering example,
we provide a detailed discussion of parallel scalability and implementation issues. Due
to space limitations, we restrict the discussion of parallel scalability to this first example;
however, the other examples will have similar structure and similar behavior is expected.
The key idea is that the algorithms of Section 2 can be implemented for PDE-constrained
optimization problems in such a way that the core computations are those that are found in
a parallel forward PDE solver, e.g. sparse (with grid structure) operator evaluations, sparse
matvecs, vector sums and inner products, and parallel PDE preconditioning. (In fact, this
is why we are able to use PETSc for our implementation.) Thus, the optimization solvers
largely inherit the parallel efficiency of the forward PDE solver. Overall scalability then
depends on the algorithmic efficiency of the particular method, which is studied in the
following sections.

3.1 Inverse acoustic wave propagation

Here we study the performance of the reduced space methods of Section 2.1 on an inverse
acoustic wave propagation problem [5], [75]. Consider an acoustic medium with domainE and boundary � . The medium is excited with a known acoustic energy source ��	�3 ��� 
(for simplicity we assume a single source event), and the pressure ��� 	 3 ���  is observed at�	�

receivers, corresponding to points 3�
 on the boundary. Our objective is to infer from
these measurements the squared acoustic velocity distribution � 	 3� , which is a property
of the medium. Here � represents the decision variable and ��	�3����  the state variable. We
seek to minimize, over the period � �� to � , an Q R norm difference between the observed
state and that predicted by the PDE model of acoustic wave propagation, at the

� �
receiver

locations. The PDE-constrained optimization problem can be written as:
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The first term in the objective function is the misfit between observed and predicted states,
the second term is a total variation (TV) regularization functional with regularization pa-



rameter 7 , and the constraints are the initial–boundary value problem for acoustic wave
propagation (assuming constant bulk modulus and variable density).

TV regularization preserves jump discontinuities in material interfaces, while smooth-
ing along them. For a discussion of numerical issues and comparison with standard Tikhonov
regularization, see [5], [80]. While regularization eliminates the null space of the inversion
operator (i.e. the reduced Hessian), there remains the difficulty that the objective function
can be highly oscillatory in the space of material model � , meaning that straightforward
solution of the optimization problem (15) can fail by becoming trapped in a local minimum
[74]. To overcome this problem, we use multilevel grid and frequency continuation to gen-
erate a sequence of solutions that remain in the basin of attraction of the global minimum;
that is, we solve the optimization problem (15) for increasingly higher frequency compo-
nents of the material model, on a sequence of increasingly finer grids with increasingly
higher frequency sources [30]. For details see [5].

Figure 1 illustrates this multiscale approach and the effectiveness of the TV regu-
larizer. The inverse problem is to reconstruct a piecewise-homogeneous velocity model
(pictured at top left) that describes the geometry of a hemipelvic bone and surrounding
volume from sparse synthetic pressure measurements on four faces of a cube that encloses
the acoustic medium. The source consists of the simultaneous introduction of a Ricker
wavelet at each measurement point. Two intermediate-grid models are shown (upper right,
lower left). The fine-grid reconstructed model (lower right) is able to capture fine-scale
features of the “ground truth” model with uncanny accuracy. The anisotropic behavior of
the TV regularizer in revealed by its smoothing of ripple artifacts along the interface of the
original model. The fine-scale problem has 2.1 million material parameters and 3.4 billion
total space-time variables, and was solved in 3 hours on 256 AlphaServer processors at the
Pittsburgh Supercomputing Center (PSC).

We next discuss how the optimization problem (15) is solved for a particular grid
level in the multiscale continuation scheme. The first order optimality conditions for this
problem take the following form:

�� ; . 0 �
.

�:��� in E8C=	 � ��� 
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� �� � in E decision equation (18).

�/0 A � � on ���
The state equation (16) is just the acoustic wave propagation initial-boundary value prob-
lem. Since the wave operator is self-adjoint in time and space, the adjoint equation (17)



Figure 1. Reconstruction of hemipelvic bony geometry via solution of an inverse
wave propagation problem using a parallel multiscale reduced (Gauss) Newton conjugate
gradient (RNCG) optimization algorithm with total variation (TV) regularization.

has the same form as the state equation, i.e. it too is acoustic wave equation. However, the
adjoint wave equation has terminal, as opposed to initial, conditions on � in (17), and it
has a different source, which depends on the state variable � . Finally, the decision equation
(18) is integro-partial-differential and time-independent.

When appropriately discretized on the current grid level, the dimension of each of
� and � is equal to the number of grid points

���
multiplied by time steps

���
, � is of

dimension
���

, and thus the system (16)–(18) is of dimension
* ��� ��� 5 ���

. This can be
very large for problems of interest—for example, in the largest problem presented in this
section, the system contains

� � � C ) �	� unknowns. The time dimension cannot be “hidden”
with the usual time-stepping procedures, since (16)–(18) couples the initial and final value
problems through the decision equation. The optimality system is thus a boundary value-
problem in 4D space–time. Full space methods require storage of at least the entire time
history of states and adjoints; moreover, because the state and adjoint equations are linear,
there is no advantage in folding the state and adjoint solver iterations into the decision
iteration, as would be done in a full space method. For this reason, the reduced space
methods of Section 2.1 are preferable. Since the state equation is linear in the state � , there
is no distinction between the linear and nonlinear variants RN and NLRN.

The numerical results in this section are based on the RNCG method with a limited



memory BFGS variant of RQN as a preconditioner. Since this is a least-squares problem,
we do not use exact Hessian information, instead using a Gauss-Newton approximation
that neglects second derivative terms that involve � . Spatial approximation is by Galerkin
finite elements, in particular piecewise trilinear basis functions for the state � , adjoint � ,
and decision � fields. For the class of wave propagation problems we are interested in, the
Courant-limited time step size is on the order of that dictated by accuracy considerations,
and therefore we choose to discretize in time via explicit central differences. Thus, the
number of time steps is of the order of cube root of the number of grid points. Since
we require time accurate resolution of wave propagation phenomena, the 4D “problem
dimension” scales with the � � power of the number of grid points.

The overall work is dominated by the cost of the CG iteration, which, because the
preconditioner is time-independent, is dominated by the Hessian-vector product. With the
Gauss-Newton approximation, the CG matvec requires the same work as the reduced gra-
dient computation: a forward wave propagation, an adjoint wave propagation, possible
checkpointing recomputations based on available memory, and the reduction of the state
and adjoint spatio-temporal fields onto the material model space via terms of the form� .

�
0 . � ��� . These components are all “PDE-solver-like,” and can be parallelized ef-
fectively in a fine-grained domain-based way, using many of the building blocks of sparse
PDE-based parallel computation: sparse grid-based matrix-vector products, vector sums,
scalings, and inner products.

We report results of fixed-size scaling on the Cray T3E at PSC. We expect the over-
head due to communication, synchronization, and sequential bottlenecks to be very low,
since one of the key features of the method is that it recasts the majority of the work in
solving the inverse problem in terms of explicitly-solved wave propagation problems, both
forward and backward in time, and local tensor reduction operations to form the reduced
gradient and reduced Hessian-vector product. Because the communication patterns for
these components are nearest-neighbor, and because there are no barriers to excellent load
balance, the code should scale well. There are also some inner products and global re-
duction operations, associated with each iteration of CG and with the application of the
preconditioner, that require global communication. In a standard Krylov-based forward
PDE solver, such inner products can start to dominate as processor counts reach into the
thousands. Here, however, it is the “PDE solver” that is on the inside, and the (inversion-
related) Krylov iterations that are on the outside. Communication costs associated with
inner products are thus negligible. Table 1 demonstrates the good parallel efficiency obtain-
able for an eightfold increase in number of processors on a Cray T3E, for a fixed problem
size of 262,144 grid points (and thus material parameters), and the same number of state
and adjoint unknowns per time step.

Table 1 shows a mild decrease in parallel efficiency with increasing problem size.
Note the very coarse granularity (a few thousand grid points per processor) for the last few
rows of the table. For many forward problems, one would prefer finer granularities, for
greater computation-to-communication ratios. However, for most optimization problems,
we are necessarily compute-bound, since a sequence of many forward-like problems has to
be solved, and one needs as much parallelism as possible. We are therefore interested in
appropriating as many processors as possible while keeping parallel efficiency reasonable.

We should point out that this particular inverse problem presents a very severe test
of parallel scalability. For scalar wave propagation PDEs, discretized with low order finite



Table 1. Fixed-size scalability on a Cray T3E-900 for a 262,144 grid point prob-
lem corresponding to a two-layered medium.

processors grid pts/processor time (s) time/gridpts/proc (s) efficiency)��
16,384 6756 0.41 1.00� *
8192 3549 0.43 0.95� � 4096 1933 0.47 0.87) *��
2048 1011 0.49 0.84

elements on structured spatial grids (i.e. the grid stencils are very compact) and explicit
central differences in time, there is little workload for each processor in each time step.
So while we can express the inverse method in terms of (a sequence of) forward-like PDE
problems, and while this means we follow the usual “volume computation/surface com-
munication” paradigm, it turns out for this particular inverse problem (involving acoustic
wave propagation), the computation to communication ratio is about as low as it can get for
a PDE problem (and this will be true whether we solve the forward or inverse problem). A
nonlinear forward problem, vector unknowns per grid point, higher order spatial discretiza-
tion, and unstructured meshes would all increase the computation/communication ratio and
produce better parallel efficiencies.

By increasing the number of processors with a fixed grid size, we have studied the
effect of communication and load balancing on parallel efficiency in isolation of algorith-
mic performance. We next turn our attention to algorithmic scalability. We characterize the
increase in work as problem size increases (mesh size decreases) by the number of inner
(linear) CG and outer (nonlinear) Gauss-Newton iterations. The work per CG iteration in-
volves explicit forward and adjoint wave propagation solutions, and their cost scales with
the � � power of the number of grid points; a CG iteration also requires the computation of
the integral in (18), which is linear in the number of grid points. Ideally, the number of
linear and nonlinear iterations will be independent of the problem size.

Table 2 shows the growth in iterations for a limited memory BFGS variant of re-
duced quasi-Newton (LRQN), unpreconditioned reduced (Gauss) Newton conjugate gra-
dient (RNCG), and LRQN-preconditioned RNCG (PRNCG)) methods as a function of
material model resolution. LRQN was not able to converge for the ��� ) � and

��� ��� �	� param-
eter problems in any reasonable amount of time, and larger problems were not attempted
with the method. The Newton methods showed mesh-independence of nonlinear iterations,
until the finest grid, which exhibited a significant increase in iterations. This is most likely
due to the TV regularizer, which results in an increasingly ill-conditioned reduced Hessian
as the mesh is refined. On the other hand, the inner conjugate gradient iterations in PRNCG
appear to remain relatively constant within each nonlinear iteration. To verify that the inner
iteration would keep scaling, we ran one nonlinear iteration on a

*���� �
grid (nearly 17 mil-

lion inversion parameters) on 2048 AlphaServer processors at PSC. This required 27 CG
iterations, which is comparable to the smaller grids, suggesting that the preconditioner is
effective.

These results show that the quasi-Newton-preconditioned Newton-CG method seems



Table 2. Algorithmic scaling by limited memory BFGS reduced quasi-Newton
(LRQN), unpreconditioned reduced (Gauss) Newton Conjugate Gradient (RNCG), and
LRQN-preconditioned RNCG (PRNCG) methods as a function of material model reso-
lution. For LRQN, the number of iterations is reported, and for both LRQN solver and
preconditioner,

* ��� L-BFGS vectors are stored. For RNCG and PRNCG, the total number
of CG iterations is reported, along with the number of Newton iterations in parentheses.
On all material grids up to

��� �
, the forward and adjoint wave propagation problems are

posed on
��� �

grid C 400 time steps, and inversion is done on 64 PSC AlphaServer proces-
sors; for the

) * � �
material grid, the wave equations are on

) * � �
grids C 800 time steps,

on 256 processors. In all cases, work per iteration reported is dominated by a reduced
gradient (LRQN) or reduced-gradient-like (RNCG, PRNCG) calculation, so the reported
iterations can be compared across the different methods. Convergence criterion is

) � ���
relative norm of the reduced gradient. “*” indicates lack of convergence;

�
indicates num-

ber of iterations extrapolated from converging value after 6 hours of runtime.

grid size material parameters LRQN its RNCG its PRNCG its� � � �
16 17 (5) 10 (5)� � � * �
36 57 (6) 20 (6)� � � ) *��

144 131 (7) 33 (6)� � � � * � 156 128 (5) 85 (4)� � � ��� ) � * 144 (4) 161 (4)� � � ��� � � � � * 177 (4) 159 (6)� � � *�� � � � *�� — 350 (7) 197 (6)) * � � * � ) � � � ��� � —
) � � � � (22) 409 (16)

to be scaling reasonably well for this highly nonlinear and ill-conditioned problem. Overall,
the method is able to solve a problem with over 2 million unknown inversion parameters
in just three hours on 256 AlphaServer processors. However, each CG iteration involves
a forward/adjoint pair of wave propagation solutions, so that the cost of inversion is over
800 times the cost of the forward problem. Thus, the excellent reconstruction in Figure 1
has come at significant cost. This approach has also been applied to elastic wave equation
inverse problems in the context of inverse earthquake modeling with success [3].

3.2 Optimal boundary control of Navier-Stokes flow

In this second example, we give sample results for an optimal boundary control problem for
3D steady Navier-Stokes flow. A survey and articles on this topic can be found in [38], [55],
[56]. We use the velocity-pressure 	 � 	 3  ���$	�3 ! form of the incompressible Navier-Stokes
equations. The boundary control problem seeks to find an appropriate source  N	 KL on the
control boundary G�E � so that the � 	 seminorm of the velocity (i.e. the rate of dissipation



of viscous energy) is minimized:
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Here the decision variable is the control, i.e. the velocity vector  on G�E � , and the objective
reflects an Q�R 	 G�E �  cost of the control. There are both Dirichlet (with source � � ) and
Neumann boundary conditions, and < is the inverse Reynolds number. For the simulation
problem we need not distinguish between G�E � and G�E<� since both boundary subdomains
are part of the Dirichlet boundary. In the optimization problem, however,  is not known.
Figure 2 illustrates the effect of the optimal boundary control in eliminating the separated
flow around a cylinder.

Figure 2. An optimal boundary control problem to minimize the rate of energy
dissipation (equivalent here to the drag) by applying suction or injection of a fluid on the
downstream portion of a cylinder at Re=40. The left image depicts an uncontrolled flow;
the right image depicts the optimally-controlled flow. Injecting fluid entirely eliminates
recirculation and secondary flows in the wake of the cylinder, thus minimizing dissipation.
The optimization problem has over 600,000 states and nearly 9000 controls, and was solved
in 4.1 hours on 256 processors of a Cray T3E at PSC.

To derive the optimality conditions, we introduce adjoint variables
� 	�3  ��� 	�3� for

the state variables ����� , respectively. See [25] for details. The optimality system then takes
the following form.



State equations:

; <�>?�@5D	 . �  �@5 . �9�A� in E. 0 �C� � in E�C� � � on G�E<� (20)�C�D on G E �; ���=5C<�	 . �S�� �A� on G�E �
Adjoint equations:
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Decision equations:

<4	 . � 5 . �� �C; 7  ��� on G�E � (22)

Since the flow equations are steady and highly nonlinear for the separated flow, there
is significant benefit to integrating state solutions iterations with optimization iterations,
and therefore we study the performance of the LNKS method of Section 2.2 in compar-
ison with a limited memory BFGS variant of the reduced quasi-Newton method. We re-
fer to the latter as LRQN. In Table 3 we quote a set of representative results from many
we have obtained for up to 1.5 million state variables and 50,000 control variables on up
to 256 processors. Approximation is by Taylor-Hood Galerkin finite elements, both for
state and decision variables. The table provides results for 64 and 128 Cray T3E proces-
sors for a doubling (roughly) of problem size. LNKS-EX refers to exact solution of the
linearized Navier-Stokes equation within the LRQN preconditioner, whereas LNKS-PR
refers to application of a block-Jacobi (with local ILU(0)) approximation of the linearized
Navier-Stokes forward and adjoint operators within the preconditioner. LNKS-PR-IN uses
an inexact Newton method, which avoids fully converging the KKT linear system for iter-
ates that are far from a solution.

The results in the table reflect the independence of Newton iterations on problem size,
the mild dependence of KKT iterations on problem size, and the resulting reasonable scal-
ability of the method. It is important to point out here that the Navier-Stokes discrete oper-
ator is very ill-conditioned, and there is room for improvement of its domain-decomposition
preconditioner (single-level block Jacobi–ILU). The scalability of the LNKS methods would
improve correspondingly. A dramatic acceleration of the LNKS algorithm is achieved by
truncating the Krylov iterations. More detailed results are given in [22], [24], [25]. The im-
portant result is that LNKS solves the optimization problem in 4.1 hours, which is 5 times
the cost of solving the equivalent simulation problem, and over an order of magnitude faster
than a conventional reduced space method (LRQN).



Table 3. Algorithmic scalability for Navier-Stokes optimal flow control problem
on 64 and 128 processors of a Cray T3E for a doubling (roughly) of problem size.

states
controls

method Newton iter average KKT iter time (hours)

389,440 LRQN 189 — 46.3
6,549 LNKS-EX 6 19 27.4

(64 procs) LNKS-PR 6 2,153 15.7
LNKS-PR-TR 13 238 3.8

615,981 LRQN 204 — 53.1
8,901 LNKS-EX 7 20 33.8

(128 procs) LNKS-PR 6 3,583 16.8
LNKS-PR-TR 12 379 4.1

3.3 Initial condition inversion of atmospheric contaminant
transport

In this section we consider an inverse problem governed by a parabolic PDE. Given obser-
vations of the concentration of an airborne contaminant $ ���
 ' � �
�� 	 at

�
� locations $ 3 
 ' � �
�� 	

inside a domain E , we wish to estimate the initial concentration � 	�3  using a convection-
diffusion transport PDE model. The inverse problem is formulated as a constrained, least
squares optimization problem:

������ � � ��	 �$� �L # %('� )* �
��


�� 	

+ , 	 � ; � �  R � 	�3 ;=3 
 N 43 ���"5 � * + , � R  43
subject to "� ; <�> � 5 � 0 . �6� � in E C 	 �����  (23)< . � 0 ���!� on ��C=	 � ��� 

�:� � in E8C%$&�N� �('
The first term in the objective functional � represents the least-squares misfit of predicted
concentrations ��	�3 
  with observed concentrations � � 	�3 
  at sensor locations, over a time
horizon 	 � ���  , and the second term provides Q�R regularization of the initial condition � , re-
sulting in a well-posed problem. The constraint is the convection-diffusion initial-boundary
value problem, where � is the contaminant concentration field, � is the initial concentra-
tion, � is the wind velocity field (assumed known), and < is the diffusion coefficient. For
simplicity, a steady laminar incompressible Navier-Stokes solver is used to generate wind
velocity fields over a terrain of interest.

Optimality conditions for (23) can be stated as as follows.
State equation:

"� ; <�> ��5 � 0 . �9� � in E8C=	 ����� < . � 0 � � � on ��C 	 �����  (24)

�9� � in E8C $ �N� � '



Adjoint equation:

; "� ;=< > � ; . 0 	 � � �� ; �
��


�� 	
	 � ; � �  � 	�3@; 3 
  in E C=	 � ��� 

	 < . �?5 � � �0 �D�� on ��C 	 �����  (25)

�:�� in E8C%$&�N�� '
Decision equation:

� � � ; � � � � � �!� in E (26)

Equations (24) are just the original forward convection-diffusion transport problem for the
contaminant field. The adjoint convection-diffusion problem (25) resembles the forward
problem, but with some essential differences. First, it is a terminal value problem; that is,
the adjoint � is specified at the final time ����� . Second, convection is directed backward
along the streamlines. Third, it is driven by a source term given by the negative of the misfit
between predicted and measured concentrations at sensor locations. Finally, the initial
concentration equation (26) is in the present case of Q R regularization an algebraic equation.
Together, (24), (25), and (26) furnish a coupled system of linear PDEs for 	 �$� �"� �L .

The principal difficulty in solving this system is that—while the forward and ad-
joint transport problems are evolution equations—the KKT optimality system is a coupled
boundary value problem in 4D space-time. As in the acoustic inversion example, the 4D
space-time nature of (24)–(26) presents prohibitive memory requirements for large scale
problems, and thus we consider reduced space methods. In fact, the optimality system is
a linear system, since the state equation is linear in the state, and the decision variable ap-
pears linearly. Block elimination produces a reduced Hessian that has condition number
independent of the mesh size (it is spectrally equivalent to a compact perturbation of the
identity). However, a preconditioner capable of reducing the number of iterations is still
critical, since each CG iteration requires one state and one adjoint convection-diffusion
solve. We are unable to employ the limited memory BFGS preconditioner that was used
for the acoustic inverse problem, since for this linear problem there is no opportunity for
the preconditioner to reuse built-up curvature information. Instead, we appeal to multigrid
methods for second kind integral equations and compact operators [34], [44], [57], [58],
[62] to precondition the reduced Hessian system. Standard multigrid smoothers (e.g. for
elliptic PDEs) are inappropriate for inverse operators and instead a smoother that is tailored
to the spectral structure of the reduced Hessian must be used; for details see [4].

The optimality system (24)–(26) is discretized by SUPG-stabilized finite elements in
space and Crank-Nicolson in time. We use a logically-rectangular topography-conforming
isoparametric hexahedral finite element mesh on which piecewise-trilinear basis functions
are defined. Since the Crank-Nicolson method is implicit, we “invert” the time-stepping
operator using a restarted GMRES method, accelerated by an additive Schwarz domain
decomposition preconditioner, both from the PETSc library. Figure 3 illustrates solution of
the inverse problem for a contaminant release scenario in the Greater Los Angeles Basin.
As can be seen in the figure, the reconstruction of the initial condition is very accurate.

We next study the parallel and algorithmic scalability of the multigrid precondi-
tioner. We take synthetic measurements on a

� C � C �
sensor array. CG is termi-



Figure 3. Solution of a airborne contaminant inverse problem in the Greater Los
Angeles Basin with onshore winds; Peclet number = 10. The target initial concentration
is shown at left, and reconstructed initial condition on right. The measurements for the
inverse problem were synthesized by solving the convection-diffusion equation using the
target initial condition, and recording measurements on a

*-) C *�) C *�) uniform array of
sensors. The mesh has 917,301 grid points; the problem has the same number of initial
condition unknowns and 74 million total space-time unknowns. Inversion takes 2.5 hours
on 64 AlphaServer processors at PSC. CG iterations are terminated when the norm of the
residual of the reduced space equations is reduced by five orders of magnitude.

nated when the residual of the reduced system has been reduced by six orders of mag-
nitude. Table 4 presents fixed-size scalability results. The inverse problem is solved on a

Table 4. Fixed size scalability of unpreconditioned and multigrid preconditioned
inversion. Here the problem size is

*���� C *�� � C *���� C *���� for all cases. We use a three-level
version of the multigrid preconditioner. The variables are distributed across the processors
in space, whereas they are stored sequentially in time (as in a multicomponent PDE). Here
hours is the wall-clock time, and � is the parallel efficiency inferred from the runtime. The
unpreconditioned code scales extremely well since there is little overhead associated with
its single-grid simulations. The multigrid preconditioner also scales reasonably well, but
its performance deteriorates since the problem granularity at the coarser levels is signifi-
cantly reduced. Nevertheless, wall-clock time is significantly reduced over the unprecondi-
tioned case.

CPUs no preconditioner multigrid
hours � hours �) *��
5.65 1.00 2.22 1.00�-) *
1.41 1.00 0.76 0.73) � * � 0.74 0.95 0.48 0.58

*�� � C *�� � C *���� C *���� grid, i.e. there are
) � C ) ��� inversion parameters, and � � � C ) �	� total



space-time unknowns in the optimality system (9). Note that while the CG iterations are in-
sensitive to the number of processors, the forward and adjoint transport simulations at each
iteration rely on a single-level Schwarz domain decomposition preconditioner, whose effec-
tiveness deteriorates with increasing number of processors. Thus, the efficiencies reported
in the table reflect parallel as well as (forward) algorithmic scalability. The multigrid pre-
conditioner incurs non-negligible overhead as the number of processors increases for fixed
problem size, since the coarse subproblems are solved on ever larger numbers of proces-
sors. For example, on 1024 processors, the

��� C � � C ���
coarse grid solve has just 270 grid

points per processor, which is far too few for a favorable computation-to-communication
ratio.

On the other hand, the unpreconditioned CG iterations exhibit excellent parallel scal-
ability since the forward and adjoint problems are solved on just the fine grids. Neverthe-
less, the multigrid preconditioner achieves a net speedup in wall-clock time, varying from
a factor of 2.5 for 128 processors to 1.5 for 1024 processors. Most important, the inverse
problem is solved in less than 29 minutes on 1024 processors. This is about 18 times the
wall-clock time for solving a single forward transport problem.

Table 5 presents isogranular scalability results. Here the problem size ranges from

Table 5. Isogranular scalability of unpreconditioned and multigrid precondi-
tioned inversion. The spatial problem size per processor is fixed (stride of 8). Ideal speedup
should result in doubling of wall-clock time. The multigrid preconditioner scales very well
due to improving algorithmic efficiency (decreasing CG iterations) with increasing problem
size. Unpreconditioned CG is not able to solve the largest problem in reasonable time.

grid size problem size CPUs no preconditioner multigrid
� 	 �$� �"� �L hours iterations hours iterations) * � � 2.15E+6 5.56E+8 16 2.13 23 1.05 8*�� �

� 1.70E+7 8.75E+9 128 5.65 23 2.22 6�-) �
� 1.35E+8 1.39E+11 1024 — — 4.89 5

� � � � C ) ��� to
) � � �>C ) � 	 	 total space-time unknowns, while the number of processors

ranges from 16 to 1024. Because we refine in time as well as in space, and because the
number of processors increases by a factor of 8 with each refinement of the grid, the total
number of space-time unknowns is not constant from row to row of the table; in fact it
doubles. However, the number of grid points per processor does remain constant, and this
is the number that dictates the computation to communication ratio. For ideal overall (i.e.
algorithmic + parallel) scalability, we would thus expect wall-clock time to double with
each refinement of the grid. Unpreconditioned CG becomes too expensive for the larger
problems, and is unable to solve the largest problem in reasonable time. The multigrid pre-
conditioned solver, on the other hand, exhibits very good overall scalability, with overall
efficiency dropping to 95% on 128 processors and 86% on 1024 processors, compared to
the 16 processor base case. From the fixed-size scalability studies in Table 4, we know that
the parallel efficiency of the multigrid preconditioner drops on large numbers of processors
due to the need to solve coarse problems. However, the isogranular scalability results of Ta-
ble 5 indicate substantially better multigrid performance. What accounts for this? First, the



constant number of grid points per processor keeps the processors relatively well-populated
for the coarse problems. Second, the algorithmic efficacy of the multigrid preconditioner
improves with decreasing mesh size; the number of iterations drops from 8 to 5 over two
successive doublings of mesh resolution. The largest problem exhibits a factor of 4.6 re-
duction in CG iterations relative to the unpreconditioned case (5 vs. 23). This improvement
in algorithmic efficiency helps keep the overall efficiency high.

4 Conclusions
This chapter has given an overview of parallel algorithms for PDE-constrained optimization
problems, focusing on reduced-space and full-space Newton-like methods. Examples illus-
trate application of the methods to elliptic, parabolic, and hyperbolic problems representing
inverse, control, and design problems. A key conclusion is that an appropriate choice of
optimization method can result in an algorithm that largely inherits the parallelism prop-
erties of the simulation problem. Moreover, under certain conditions, the combination of
linear work per Krylov iteration, weak dependence of Krylov iterations on problem size,
and independence of Newton iterations on problem size can result in a method that scales
well with increasing problem size and number of processors. Thus, overall (parallel +
algorithmic) efficiency follows.

There is no recipe for a general-purpose parallel PDE-constrained optimization meth-
od, just as there is no recipe for a general-purpose parallel PDE solver. The optimizer must
be built around the best available numerical techniques for the state PDEs. The situation is
actually more pronounced for optimization than it is for simulation, since new operators—
the adjoint, the reduced Hessian, the KKT—appear that are not present in the simulation
problem. PDE-constrained optimization requires special attention to preconditioning or
approximation of these operators, a consideration that is usually not present in the design
of general purpose optimization software.

However, some general themes do recur. For steady PDEs or whenever the state
equations are highly nonlinear, a full-space method that simultaneously iterates on the state,
adjoint, and decision equations can be significantly more effective than a reduced space
method that entails satisfaction of (a linear approximation of) the state and adjoint equations
at each optimization iteration. For example, in the optimal flow control example in Section
3.2, the LNKS method was able to compute the optimal control at high parallel efficiency
and at a cost of just 5 simulations. LNKS preconditions the full space KKT matrix by
an approximate factorization involving subpreconditioners for state, adjoint, and reduced
Hessian operators, thereby capitalizing on available parallel preconditioners for the state
equation. Alternatively, methods that seek to extend domain decomposition and multigrid
preconditioners for direct application to the KKT matrix are being developed and show
considerable promise in also solving the optimization problem in a small multiple of the
cost of the simulation. Careful consideration of smoothing, intergrid transfer, and interface
conditions is required for these methods. Like their counterparts for the PDE forward
problem, parallelism comes naturally for these methods.

At the opposite end of the spectrum, for time-dependent PDEs that are explicit, linear,
or weakly nonlinear at each time step, the benefit of full-space solution is less apparent, and
reduced space methods may be required, if only for memory reasons. For small numbers



of decision variables, quasi-Newton methods are likely sufficient, while for large (typically
mesh-dependent) decision spaces, Newton methods with inexactly-terminated CG solution
of the quadratic step are preferred. Preconditioning the reduced Hessian becomes essential,
even when it is well-conditioned, since each CG iteration involves a pair of PDE solves
(one state, one adjoint). For many large-scale inverse problems, the reduced Hessian has
a “compact + identity” or “compact + differential” structure, which can be exploited to
design effective preconditioners. Nevertheless, when the optimization problem is highly
nonlinear in the decision space but weakly nonlinear or linear in the state space, such as for
the inverse wave propagation problem described in Section 3.1, we can expect that the cost
of solving the optimization problem will be many times that of the simulation problem.

A number of important and challenging issues were not mentioned. We assumed that
the appropriate Jacobian, adjoint, and Hessian operators were available, which is rarely
the case for legacy code. A key difficulty not discussed here is globalization, which must
often take on a problem-specific nature (as in the grid/frequency continuation employed
for the inverse wave propagation problem). Design of scalable parallel algorithms for
mesh-dependent inequality constraints on decision and state variables remains a signifi-
cant challenge. Parallel adaptivity for the full KKT system complicates matters consider-
ably. Nonsmoothness and singularities in the governing PDEs, such as shocks, localization
phenomena, contact, and bifurcation, can alter the convergence properties of the methods
described here. Choosing the correct regularization is a crucial matter.

Nevertheless, parallel algorithms for certain classes of PDE-constrained optimiza-
tion problems are sufficiently mature to warrant application to problems of exceedingly
large scale and complexity, characteristic of the largest forward simulations performed
today. For example, the inverse atmospheric transport problem described in Section 3.3
has been solved for 135 million initial condition parameters and 139 billion total space-
time unknowns in less than 5 hours on 1024 AlphaServer processors at 86% overall ef-
ficiency. Such computations point to a future in which optimization for design, control,
and inversion—and the decision-making enabled by it—become routine for the largest of
today’s terascale PDE simulations.
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[51] M. HINTERMÜLLER AND M. HINZE, Globalization of SQP-methods in control of the
instationary Navier-Stokes equations, Mathematical Modelling and Numerical Anal-
ysis, 36 (2002), pp. 725–746.
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